Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Immune control of HIV-1 after early treatment of acute infection

Abstract

Virus-specific T-helper cells are considered critical for the control of chronic viral infections1,2. Successful treatment of acute HIV-1 infection leads to augmentation of these responses3,4,5, but whether this enhances immune control has not been determined. We administered one or two supervised treatment interruptions to eight subjects with treated acute infection, with the plan to restart therapy if viral load exceeded 5,000 copies of HIV-1 RNA per millilitre of plasma (the level at which therapy has been typically recommended) for three consecutive weeks, or 50,000 RNA copies per ml at one time. Here we show that, despite rebound in viraemia, all subjects were able to achieve at least a transient steady state off therapy with viral load below 5,000 RNA copies per ml. At present, five out of eight subjects remain off therapy with viral loads of less than 500 RNA copies per ml plasma after a median 6.5 months (range 5–8.7 months). We observed increased virus-specific cytotoxic T lymphocytes and maintained T-helper-cell responses in all. Our data indicate that functional immune responses can be augmented in a chronic viral infection, and provide rationale for immunotherapy in HIV-1 infection.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: HIV-1 Gag-specific T-helper-cell responses in HIV-1 infection.
Figure 2: Viral load in a pilot study of successive treatment interruptions in a 32-yr-old male with treated acute HIV-1 infection.
Figure 3: Virology and immunology in three subjects who controlled viraemia after the first treatment interruption.
Figure 4: Virology and immunology in subjects requiring repeated treatment interruption.

Similar content being viewed by others

References

  1. Matloubian, M., Concepcion, R. J. & Ahmed, R. CD4+ T cells are required to sustain CD8+ cytotoxic T-cell responses during chronic viral infection. J. Virol. 68, 8056–8063 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Battegay, M. et al. Enhanced establishment of a virus carrier state in adult CD4+ T-cell-deficient mice. J. Virol. 68, 4700–4704 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Rosenberg, E. S. et al. Vigorous HIV-1-specific CD4+ T cell responses associated with control of viremia. Science 278, 1447–1450 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Oxenius, A. et al. Early highly active antiretroviral therapy for acute HIV-1 infection preserves immune function of CD8+ and CD4+ T lymphocytes. Proc. Natl Acad. Sci. USA 97, 3382–3387 (2000).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. Malhotra, U. et al. Effect of combination antiretroviral therapy on T-cell immunity in acute human immunodeficiency virus type 1 infection. J. Infect. Dis. 181, 121–131 ( 2000).

    Article  CAS  PubMed  Google Scholar 

  6. Kalams, S. A. & Walker, B. D. The critical need for CD4 help in maintaining effective cytotoxic T lymphocyte responses. J. Exp. Med. 188, 2199–2204 ( 1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. von Herrath, M. G., Yokoyama, M., Dockter, J., Oldstone, M. B. & Whitton, J. L. CD4-deficient mice have reduced levels of memory cytotoxic T lymphocytes after immunization and show diminished resistance to subsequent virus challenge. J. Virol. 70, 1072–1079 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Zajac, A. J. et al. Viral immune evasion due to persistence of activated T cells without effector function. J. Exp. Med. 188, 2205–2213 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kalams, S. A. et al. Association between virus-specific cytotoxic T-lymphocyte and helper responses in human immunodeficiency virus type 1 infection. J. Virol. 73, 6715–6720 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Gerlach, J. T. et al. Recurrence of hepatitis C virus after loss of virus-specific CD4(+) T- cell response in acute hepatitis C. Gastroenterology 117, 933–941 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  11. Lechner, F. et al. Analysis of successful immune responses in persons infected with hepatitis C virus. J. Exp. Med. 191, 1499–1512 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lisziewicz, J. et al. Control of HIV despite the discontinuation of antiretroviral therapy. N. Engl. J. Med. 340, 1683– 1684 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Ortiz, G. M. et al. HIV-1-specific immune responses in subjects who temporarily contain virus replication after discontinuation of highly active antiretroviral therapy. J. Clin. Invest. 104, R13– R18 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kahn, J. O. & Walker, B. D. Acute human immunodeficiency virus type 1 infection. N. Engl. J. Med. 339, 33–39 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Lori, F. et al. Treatment of human immunodeficiency virus infection with hydroxyurea, didanosine, and a protease inhibitor before seroconversion is associated with normalized immune parameters and limited viral reservoir. J. Infect. Dis. 180, 1827–1832 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  16. Carpenter, C. C. et al. Antiretroviral therapy for HIV infection in 1997. Updated recommendations of the International AIDS Society/USA panel. J. Am. Med. Assoc. 277, 1962–1969 (1997).

    Article  CAS  Google Scholar 

  17. Lyles, R. H. et al. Natural history of human immunodeficiency virus type 1 viremia after seroconversion and proximal to AIDS in a large cohort of homosexual men. Multicenter AIDS Cohort Study. J. Infect. Dis. 181, 872–880 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Pantaleo, G. et al. Major expansion of CD8+ T cells with a predominant V beta usage during the primary immune response to HIV. Nature 370, 463–467 ( 1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Autran, B. et al. Positive effects of combined antiretroviral therapy on CD4+ T cell homeostasis and function in advanced HIV disease. Science 277, 112–116 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  20. Evans, D. T. et al. Virus-specific cytotoxic T-lymphocyte responses select for amino-acid variation in simian immunodeficiency virus Env and Nef. Nature Med. 5, 1270–1276 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Dhodapkar, M. V. et al. Rapid generation of broad T-cell immunity in humans after a single injection of mature dendritic cells. J. Clin. Invest. 104, 173–180 ( 1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Davey, R. T. Jr et al. HIV-1 and T cell dynamics after interruption of highly active antiretroviral therapy (HAART) in patients with a history of sustained viral suppression. Proc. Natl Acad. Sci. USA 96, 15109–15114 (1999).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Janssen, R. S. et al. New testing strategy to detect early HIV-1 infection for use in incidence estimates and for clinical and prevention purposes. J. Am. Med. Assoc. 280, 42–48 (1998).

    Article  CAS  Google Scholar 

  24. Little, S. J. et al. Reduced antiretroviral drug susceptibility among patients with primary HIV infection. J. Am. Med. Assoc. 282, 1142–1149 (1999).

    Article  CAS  Google Scholar 

  25. Brander, C. & Walker, B. D. in Molecular Immunology Data Base (eds Korber, B. T. et al.) IV-50–IV-60 (Los Alamos National Laboratory, Los Alamos, New Mexico, 1997).

    Google Scholar 

  26. Goulder, P. J. et al. Differential narrow focusing of immunodominant human immunodeficiency virus gag-specific cytotoxic T-lymphocyte responses in infected African and caucasoid adults and children. J. Virol. 74, 5679–5690 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Walker, B. D. et al. Long-term culture and fine specificity of human cytotoxic T-lymphocyte clones reactive with human immunodeficiency virus type 1. Proc. Natl Acad. Sci. USA 86, 9514– 9518 (1989).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Martinez-Picado, J., Sutton, L., De Pasquale, M. P., Savara, A. V. & D'Aquila, R. T. Human immunodeficiency virus type 1 cloning vectors for antiretroviral resistance testing. J. Clin. Microbiol. 37, 2943–2951 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Kalams, S. A. et al. Levels of human immunodeficiency virus type 1-specific cytotoxic T- lymphocyte effector and memory responses decline after suppression of viremia with highly active antiretroviral therapy. J. Virol. 73, 6721–6728 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Doris Duke Charitable Foundation (B.D.W., E.S.R.), the NIH (E.S.R., R.D., B.D.W.), the Elizabeth Glaser Pediatric AIDS Foundation (P.J.R.G.), the Deutscher Akademischer Austauschdienst (M.A.), the UK Medical Research Council (P.J.R.G.) and several private donors. We thank A. Munoz for conducting the analysis comparing our data with the MACS data. We also thank the subjects who participated in these trials, M. S. Hirsch and D. T. Scadden for comments on the manuscript; B. Dale for supplying kits for viral load testing; P. Sax and B. Davis for help in recruiting study subjects; M. J. Ferraro, J. Eversley and S. Masci, for technical support; and B. Rawal for performing modified HIV-1 ELISA assays. P.J.R.G. is an Elizabeth Glaser Scientist and B.D.W. is a Doris Duke Distinguished Clinical Science Professor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce D. Walker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosenberg, E., Altfeld, M., Poon, S. et al. Immune control of HIV-1 after early treatment of acute infection. Nature 407, 523–526 (2000). https://doi.org/10.1038/35035103

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35035103

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing